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protocol specifications, etc. etc.)

e requirement to anticipate errors and
unpredictable environments

e requirement to handle diversely-
configured hosts

e Consider two aspects (at opposite
ends of the software design spectrum):

— layered systems and formal network
models

— “nuts and bolts” of some of the
problems and how to deal with them

e Also, introduce some terminology and
technology concepts

2-2
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» References:
— Tanenbaum: Ch1.3.1,1.3.2,1.4
— Kurose & Ross: Ch 1.7
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— closer to the top is more abstract (user-
oriented)

— closer to the bottom is more “real”

 The number, name, content and
functionality of each layer varies from
network to network
— each layer provides services to next-

higher level, hiding details of how
services are implemented

e Inter-machine communication occurs
when layer N on a machine converses
with layer N on another machine

2-4
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* Peer processes communicate using
their protocol

e Peer process communication is an
abstraction: data is not actually
transferred directly between peers

— a layer N process passes data and
control information to layer immediately
below (N-1), until lowest level is
reached

* the uppermost layer is the application:
its logic is just a protocol like any other

— below the lowest level is the wire (fiber,
radio-wave, carrier-pigeon, etc.)

2=
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— defines the primitive operations
available in the lower layer
» Interface specifications must define
Interfaces and services clearly
— services must be well-understood and
specific
 Well-defined interfaces are critical to
allow layer-by-layer interchangeabllity

2-6
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Implementor to write code and define
Interfaces

* Neither implementation details nor
Interface specification are part of the
architecture

2
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Philosopher | o ' Philosopher
Kenya Indonesia Layer 3
Layer |
3/2 Interface Layer 2
Protocol
Translator - ——P Translator Layer 2
Layer
2/1 Interface Layer 1

— Protocol —
Communications Communications L 1
Engineer Engineer ayer

e (From Tanenbaum, p18)

e Consider two philosophers (peer
processes on Layer 3) who wish to
communicate

— one in Kenya (Py), the other in
Indonesia (P))

— they do not speak a common language,
S0 each hires a translator (peer
processes on Layer 2)

— translators each contract with a
communications engineer (peer
processes on Layer 1)

2-8
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Philosopher
Kenya

Philosopher Layer 3

Indonesia
Layer |
3/2 Interface Layer 2
Protocol
Translator |@——| Translator Layer 2
Layer
2/1 Interface Layer 1

— Protocol —
Communications Communications L 1
Engineer Engineer ayer

P, wishes to convey, in philosophical
terms, affection for oryctolagus cuniculus
to peer (P))

P, passes a message (in Swahili) across
Layer Interface 3/2 to the translator

— translator changes the message to ‘| like
rabbits” or “J’aime des lapins” or “Me

gustan los conejos”, depending on Layer
2 protocol

— both translators must agree in advance on
what the “interchange language” will be

2-9
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Philosopher | o ' Philosopher
Kenya Indonesia Layer 3

Layer |
3/2 Interface Layer 2
Protocol
Translator |@———| Translator Layer 2
Layer
2/1 Interface t Layer 1 ‘

— Protocol —
Communications Communications L ‘1
Engineer Engineer aye

« Translator gives the message to the
engineer (via the Layer 2/1 Interface) for
transmission by telephone, telegram,
letter or any other means

— engineers must agree in advance on the
transmission method (i.e. the Layer 1
protocol)

 When the message arrives in Indonesia,
the engineer gives it to the Indonesian
translator (via the Layer 1/2 Interface)

2-10
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Layer
3/2 Interface

Philosopher
Kenya

Philosopher

Translator

Layer
2/1 Interface

Indonesia
Layer 2 t
Protocol
- Translator
Layer 1 ‘

Communications
Engineer

Protocol l

Communications
Engineer

Into Indonesian and passes the
translated message (via the Layer 2/3

Interface) to P,

Copyright © 2001 Trevor R. Grove

7

Layer 3

Layer 2

Layer 1
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— no other protocol or interface neec
change

e Layer interfaces in Kenya do not have
to be the same as those in Indonesia

 The peer abstraction is crucial for all
network design

— divide the task of network design into
smaller, isolated, manageable design
problems: i.e. the design of the layers

2-12



The ISO OSI reference
MeEE]

— generally, a layer represents a change
In abstraction

— each layer function is clearly defined

— layer function should be conducive to
protocol standardization (for existing
standards or new ones)

— layer function should minimize data-
flow across layer interfaces

2-13
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(tog-to-goiicrm))

connections between hosts

 Transport: error-free host-to-host
communication; quality of service
functions; multiplexing/aggregation

 Network: getting data through subnet
(routing)

 Data Link: error-free frame delivery

 Physical: transmission of raw bits on
a communications medium

2-14
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A

Application
Presentation
Session

Transport

Network

Data-Link -----.-- D

Physical  f-----... Ph

§ Physical Media §

 Why seven layers?

— enough to separate function, but not
too much overhead

 The OSI reference model is not a
complete network architecture:

— no specification of service interfaces
and layer protocols

— ISO has produced and published
separately a set of (independent)
standards for each of the layers

2-15

Copyright © 2001 Trevor R. Grove



Data transmission In the
Q)3 rroela

AH[AP Dat]
lle Data Unit |

[SH]  Data Unit |

[TH[  Data Unit |

N [NH] Data Unit 1 N

D [FTAIC] Data Unit (I Field ) [FCSF] D

Ph | | Bits | |Ph

Sender process X sends to receiver Y

X’s data given to Application Layer;
application header added

Augmented data given to Presentation
Layer; presentation header added

Augmented? data given to Session Layer

Etc. until the physical layer, where bits
are transmitted to Y

Augmented’ data percolates up through
Y’s layers, removing headers along the

way 2-16



Services and interfaces

A

Application

Presentation

Session

Transport

Network

Data-Link -----.-- D
Physical  f-----... Ph

§ Physical Media §

» Active parts of layers are entities
— software process
— hardware (1/O chip, etc.)

« Entities in the same layer are peer

entities: application entities,
presentation entities, etc.

e Entities in layer N implement a service
used by layer N+1

— layer N is the service provider, layer
N+1 is the service user
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— layer N entities uses SAPs at layer N-1

« Adjacent layers must agree on the
rules about using the interface

2-18
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addresses and other information

Each level can choose its PDU size,
and can fragment the higher-level PDU

Conversely, a level could decide to
buffer many PDUs

Each level must keep track of its own
sequencing and error-checking
Information

For example: a layer 3 datagram might
be segmented and packed into layer 2
frames by the sender, and unpacked
and reassembled by the receiver

2-19
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— ropust
Layered organization analogous to OSI

Four layers (top to bottom):
— application

— transport

— Internet

— host-to-network (Tanenbaum); “link
layer & LANS” (Kurose & Ro0sS)

Note that the reference model layer
names are not protocol names

2-20
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— Internet layer:
° |p
— host-to-network:

e ? —not defined by the reference model,
use protocols likke CSMA/CD, token-ring
etc.

2-21
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seem thin, and others are overloaded)

— defines explicit separation between
services, interfaces and protocols

— good software engineering principles

— otherwise, unwieldy and inefficient?
« TCP/IP has good protocols, but the

reference model was retrofitted and

cannot realistically describe anything
else

e See Tanenbaum Ch 1.4.3, 1.4.4 and
1.4.5
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The little

Or, now that we’ve seen the big
picture frameworks, look at some
of the detalls of the issues and
problems to be handled

228
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— definition of data unit:
» packet, datagram, file, frame, etc
* For only some layers:
— error detection/correction
— message ordering
— flow control

— data fragmentation/aggregation
between layers

— multiplexing

2-24
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Multiplexing

Baseband vs broadband

Broadcasting vs point-to-point

Full and half duplex

Circuit-switched vs packet-switched again
Datagrams vs virtual circuit

Network physical organization & topology
Routers, bridges and subnets

References:
— Tanenbaum: Ch 1.3.4,2.4.5,5.1.1

— Kurose & Ross: Ch 1.1,1.3.2,1.4,1.5.2,

5.5.1,5.6.2
2-25
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by modulation (frequency, amplitude or
phase)

— digital information: use a modem to
convert to analog

— analog information:

 voice telephone; AM and FM radio
 Digital signalling: represent binary
Information with low-high voltages (e.qg.
0,+5 or =5)

— analog information: use a codec to
convert to digital (pulse-coded
modulation)

— digital information: Manchester encoding

2-26
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Sending multiple messages through a
single communications channel
Frequency-division multiplexing (FDM):
— all A, messages sent simultaneously

— each A, uses a different electrical / radio
frequency (ie analog)

Time-division multiplexing (TDM):
— each process A, has a turn using the full
capacity of the path

— path is divided into slots or equal duration;
each process can use its slot or not
(synchronous usage based on clocking)

22
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— messages are sent according queue-
processing rules (first-come-first serve,
priority, etc.)

— If messages arrive at multiplexer faster
than sending rate, queue builds and
throughput decreases, otherwise each
process has perception of a private path

« FDM implies broadband, most applicable
with analog signalling

 TDM takes turns using medium, useful for
baseband

« SMUX is a form of TDM (irregular slot
usage), same applicability

2-28
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— signalling using large part of available
spectrum

* historically referred to analog systems,
also applicable to digital systems

— many simultaneous channels (uses
FDM to put each channel at different
frequency)

— cable TV, satellite

— does not simply mean high-capacity,
despite popular-press usage

2-29
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transmit which it is receiving (and v.v.)

o A full-duplex transmission is one in
which both ends can be transmitting
and receiving simultaneously

* In a half-duplex transmission, one host
IS receiving and the other is
transmitting

— the roles change, perhaps often
* Duplex can refer to physical media and
also higher-layer communication

— e.g. at the application layer, “who
sends and receives when” is a
significant part of the app. protocol

2-30
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* Point-to-point:
— private connection
— path must established before use

2-31
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— circuit can contain be any combination of
(analog or digital) X (signals or data)

» Packed-switched:
— digital only

 items that are switched are PDUSs:
packets, frames, datagrams, ...

— data string is divided into packets
— packets are sent individually
— “store-and-forward”

252
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— form of connectionless service

— datagrams are independent units

— datagrams are routed independently
— arrival order not guaranteed

— choice in quality of service:
 reliable — datagrams are ACKed
— higher cost, delays possible
* unacknowledged service
— lower cost, less protocol interaction

2-33
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— virtual circuit is identified by circuit
number

» subsequent datagrams are addressed via
the circuit number

— all datagrams follow same route
 usually, network conditions

— high-quality service — datagrams are
guaranteed to arrive in order

— circuit functionality distinct from raw
datagram delivery (different layer)

— bi-directional

— PVC: permanent virtual circuit; SVC.:

switched virtual circuit
2-34

Copyright © 2001 Trevor R. Grove



Coppaeilonlass s
connection-oriented
services

onnectuon-orientec

— requires initial protocol “handshake”
» each end system is aware of the other

— generally higher level of service

— e.g. Internet CO is reliable, guaranteed
order, flow control, congestion control

e Connectionless (“CL"):
— no handshake, no awareness
— generally lower service level

2-35
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77

— datagram vs. VC characterizes the way
data moves through network

 refer to network as “datagram network”
or “VC network”

e A picture:
Kurose & Ross
Figs 1.13-1.15

Telecommunications
networks

Packet-switched
networks
Datagram
. hetworks

Copyright © 2001 Trevor R. Grove

Circuit-switched
networks
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transfer

which layer(s) provide the reliability

— virtual circuit networks are usually
reliable

e “Unreliable” means:
— datagrams might arrive, might not

— If they arrive, might be in the wrong
order

— datagram networks are often unreliable

25
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 These were differentiated by scale and
connectivity technology:

all are packet-switching networks

generally, LANs use broadcasting and WANs
use point-to-point

 LANSs (>1Mbits/sec) using Ethernet™ or
Token-ring, etc

Copyright © 2001 Trevor R. Grove

used in geographically-restricted areas
because of technology limitations

cheap

used in office / classroom / commercial
environments, forming groups of related usage

before Ethernet/TokenRing, LANs were
created using other technologies, including
serial, parallel 2.38
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connect LNs '

— “fractional” services available from
providers for private leasing

— various commercial products defined
« MANSs had been a curiosity (special-

purpose hybrids) but are becoming more
relevant:

— availability of “dark fiber” from many
sources

— use of cable TV infrastructure

— both can provide cost-effective LAN-like
speeds (or better) over municipal-sized
areas

2-39
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smaller networks together; i.e. a
network of networks

e connectivity between the networks is
the “Internet”

— what is of interest is how to connect to
that infrastructure
 via LAN (e.g. corporate, education)

 via dialup (standard POTS, ISDN or
dedicated private links) via dedicated
MAN-sized technologies like ADSL
(Bell high-speed) or cable (@Home)

e via wireless
e etc.

e Kurose & RossCh 1.5.1&1.8
2-40
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— major links are constructed and operated
by NSP (national service providers)

— NSPs connect to each other at NAPs
(network access points)

— each connection is made according to
performance and capacity requirements

— every NAP does not connect to each
other, hence the topology graph of the
Internet is not complete

— NSPs provide connections for regional
and local ISPs in a multi-tier fashion

o Kurose & Ross Fig. 1.26
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graph)

— referred to as “shared medium”

— physical topology is a LAN need not be
the same as the conceptual connectivity
topology

* Ethernet LANs can be implemented with a

star-shaped cabling system or a
continuous loop cable or wireless

* Token-ring LANs are implemented
electrically as a sequence of point-to-point
cables, but may be cabled as a star

 Topology of ISP connectivity varies
— star for dialup, ADSL and other telco

— shared for cableco (bus)
2-42
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Ethernet™

B
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— Idle hosts must propagate the token

— token flow is unidirectional over the
sequence of host-to-host (point-to-point)

connections /Ej
I

]

AN b

2-44
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different conceptual topology
— depends on the hardware in the middle

_

|

Hub

2-45
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connections
— also called: packet-switching node, data-
switching exchange, intermediate system
 Bridge: connects LANs. LANs may be
similar or differing types; may be
physically close or remote

e Subnet: collection of routers and
communications channels

— a network that is connected to other
networks (to form an internet)

— any identifiable portion of a network

— subnetting: the process of subdividing a

network
2-46
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Issues to be handled

e References:

— Kurose & Ross Ch 5.2,3.4,3.5.2,1.6
— Tanenbaum, Ch 1.3.3, Chapter 3
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o Standard method: divide document
Into small units

— units are usually equally-sized

— units are packets or datagrams

« datagrams is the preferred term in
general discussions about application
data

» packet is usually reserved for a specific
class of data structure

2-49
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document may not be possible (or
expensive)

— datagrams from many senders (or
sender’s processes) can be
multiplexed on a single medium

2-50



Transmission Issues

— how many datagrams can and should
be sent (be In transit at the same
time)?

— what if the receiver is too slow or does
not have enough memory?

— how does the sender not overwhelm
the receiver?

2-51
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e Addressing:

— how do the datagrams arrive at the
correct destination?

— (“correct destination” implies computer
and application program on that
computer)

* Routing:

— how is the “correct” route chosen for a
datagram?

— IS there a correct route?

2=S52
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— how and when do all these decisions
get made?

— what is the address of a computer?

— what is the datagram size?

— what is the route through the network?
— when is a datagram correct?

— when has a datagram arrived?

2-53
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number of received datagram

— receiving computer can also send a
datagram indicating the received
datagram has a content error — called a
negative acknowledgement (NAK)

2-54
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— If it does not arrive, sender re-sends
the datagram

— waiting time called a time-out or time-
out period

« What if the first (NAKed) datagram
then arrives?

— duplicate message at receiver
e What if...
 What if...

2-55
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* does the sender care if there are a few
errors that are undetected?

» probably not: want large coverage at
low cost, not complete coverage at high
cost

— streaming media

» does loss of a few datagrams have a
material effect on the overall media
presentation?

* probably not: perceived as a tiny
“glitch” in the content

2-56
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oytes
— assume 10,000 characters/sec
transmission facility

— one second for a signal to travel from the
source to the destination (propagation
delay)

e Observations:

— document can leave sender In
100,000/10,000 = 10 sec

« transmission delay or store & forward
delay

— entire document arrives at receiver 1
second after last character leaves sender

2=
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— (assume A
send is negligible)
o Datagram transmission:

— 100,000 byte document / 1,000 bytes
per datagram = 100 datagrams

— transmit time for one datagram:
1,000 B per dg / transmission speed +
signal delay
1/10 + 1 = 1.1 seconds

— plus ACK time: 1.1 + 1 = 2.1 seconds

— time for 100 datagrams: 2.1. x 100 =
210 seconds (!)

2-58
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waiting for ACK

— total transit time for 10 datagrams:
10 x (1,000/10,000) + 1 = 2 seconds

— plus time for one ACK: 2 + 1 = 3 seconds

— time for 10 groups of 10 datagrams: 10 x 3
= 30 seconds

 Example 2: 20-datagram groups

— total transit time for 20 datagrams:
20 x (1,000/10,000) + 1 = 3 seconds

— plus time for one ACK: 3 + 1 = 4 seconds

— time for 5 groups of 20 datagrams: 5 x 4 =
20 seconds

2-359
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computer
e Called “Flow Control”
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computer the maximum number of
datagrams that the receiver can handle —
the so-called window size W

 The sending computer sends datagrams
numbered from D:i up to D:i+(W-1)
— eg for W=4 and i=1 initially, can send D:1
to D:4

 Assume that datagrams are delivered in
order

 Receiver ACKs a sequence of datagrams
by indicated the number of the next
datagram expected in the sequence to
maintain sequential order

2-62
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— Transit=j-i+1 datagrams were in transit
before the ACK:k, starting at D:i

— Available=W-(j-i+1) slots were left over
once all the in-transit datagrams arrived

— Freed=k-I slots have now been freed
(datagrams D:i to D:k-1 have been
consumed)

— there are (j-k+1) DGs still in transit
(unconsumed); W-(J-k+1) datagrams can
be put in transit now, starting at D:j+1

« Sending computer is implicitly controlled:
If W frames are sent without
acknowledgement, the sender must stop

e This protocol is the Sliding-Window
Protocol or sliding-window flow-control
2-63
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May Send 4 more 3 DGs Receiveo
Can Receive 4 more
4567891011 ... ACK 4 _ *1,2, 3 consumed
ACK Received
Expand Window by
ACK 4 - ACK1 = 3 free
May Send 7 4,5, 6 Expand Window by
7,8,9 ACK 4 - ACK 1
\ May Receive 7
1011 12 ...
Shrink Window by 6
May Send 1 more 456789
6 Received
Can Receive 1 more
101112... ACK 5 *
ACK Received </ 4 only consumed
Expand Windows by 56789
ACK S - ACK 4 Expand Window by
May Send 2 ACK 5 - ACK 4

May Receive 2 2-64
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— consider data to be transmitted as a
sequence of bits, divided into frames
(short sequences e.g. 8, 16, 32 or 128
bits)

o frame: another term analogous to
packet, datagram

— add extra, redundant bits to frame to
detect errors

— extra bits are calculated as a function of
the bits in the frame

 original bits plus extras are transmitted

2-65
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— If same, frame is error-free

— If error, notify for retransmission (NAK)
o Several standard methods:

— parity check

— longitudinal redundancy check (LRC)

— cyclical redundancy check (CRC)

2-66
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1 01 1 0 01 00O

I:)even B BZ B3 B4 BS B6 B? BB
0 01110100

— this Is “even parity”
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— this is “odd parity”

« Parity-checking works only for single-
bit errors; errors in two or more bits
may not be detected

* |n principle, could count zero-bits, too

2-68
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— arrange a group of frames to form a
rectangular block

— add parity to rows, as usual

— add a new row after the existing rows,
composed of parity bits for the columns

e One bit will be ambiguous (parity of
parity) — choose meaning arbitrarily

2-69
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O 1 0O0O0O0O0O0O
1 11 0 001 10
1 1 0 0 1 0 0 0O

Parity
O OO0 O 1 0O0O00 < row

 Rows are odd parity, columns are even
parity (or vice versa)

« Bottom-left is ambiguous, arbitrarily
choose row representation (odd)

2-70
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(CRC)

Sequence (FCS)

e The checksummed frame M' now has
k+n bits (M'is 2"M + FCS; + is modulo-
2 (XOR))

e Basic idea:. choose FCS such that M'is
divisible (no remainder) by some divisor
D (modulo-2 long division)

— sender and receiver agree in advance
onD

— sender computes FCS and constructs M'
and sends

— receiver computes M'/ D; remainder = 0
L1 no error

2-71
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n+1 bits and high-order bit 1
— low-order bit 1
— prime (?)
e Concatenate M and FCS to form M" :
2"™ - FCS
— Assert: M'is divisible by D

2¥(2
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— Example:
G(X) =x°+x*+ 1 denotes D = 110001

 Some international standards for
choices for G(x):

e CRC-12 is x12+x114+x3+x2+x1+1
(1100000001111)

e CRC-16 is x16+x15+x2+1
(11000000000000101)

e CRC-CCITT is x15+x12+x5+1
(10001000000100001)

2S



CRC effectiveness

— (ref: Tanenbaum)

e Speed & space considerations:

— calculations can be done with shift-
register hardware

— 1000-bit frame with CRC-16 incurs only
1.7% space overhead
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together 1 1
odd number errors 1 1
burst error < CRC size 1 1
burst error = CRC size 1-1/2° 1- 12"
burst error > CRC size 1-1/2° 1-1/2%

2-75
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Called ARQ mechanisms: Automatic
Repeat reQuest

“stop-and-wait” ARQ: for one
datagram at a time flow-control

“go-back-N" ARQ: for sliding-window
flow-control

2-76
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to it
 Naming scheme governed by central
authorities
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— E.g. internet (tcp/ip):
129.97.208.19
e 129.97 is the network address
e 208.19 is the computer address on that
network
* Networks know how to reach other

networks; an individual network knows
how to reach its computers

* Will require name-to-address mapping
(to be discussed later)
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computer

o SAPs are the endpoint of all services

— all communications in both directions is
done via a SAP

— a datagram arrives at the computer and
IS sent to a SAP, where a program can
process it

— programs send a datagram through a
SAP to another computer

2-79
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protocol information:
— addresses: source and destination

— addresses: computer, SAP

— sequence number

— error detection/correction (checksums)

2-80
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Checksum Urgent pointer

Options (optional, variable size)

Data segment (variable size)

. TCP

 In this example, datagrams are
program-to-program, hence port
addresses are used
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