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OverviewOverview

• Networks are complex systems
– complexity arises from:

• need to apply sound software
engineering principles (black boxes,
formal specifications, standards,
separation of implementation from
protocol specifications, etc. etc.)

• requirement to anticipate errors and
unpredictable environments

• requirement to handle diversely-
configured hosts

• Consider two aspects (at opposite
ends of the software design spectrum):
– layered systems and formal network

models
– “nuts and bolts” of some of the

problems and how to deal with them
• Also, introduce some terminology and

technology concepts
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The big picture –The big picture –
network modelsnetwork models

• Networks must be designed and
implemented carefully

• Often have conflicting goals
– reliability vs throughput

• Various abstract models have been
designed and implemented

• References:
– Tanenbaum:  Ch 1.3.1, 1.3.2, 1.4
– Kurose & Ross:  Ch 1.7
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BasicsBasics

• Networks are organized as a series of
layers or levels
– each level is built on its predecessor

• Typically depicted as top-to-bottom
stack of layers:
– closer to the top is more abstract (user-

oriented)
– closer to the bottom is more “real”

• The number, name, content and
functionality of each layer varies from
network to network
– each layer provides services to next-

higher level, hiding details of how
services are implemented

• Inter-machine communication occurs
when layer N on a machine converses
with layer N on another machine
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…basics, 2…basics, 2

• The rules used in this conversation are
known as the Layer N protocol

• The entities forming the corresponding
layers on the different machines are
called peer processes

• Peer processes communicate using
their protocol

• Peer process communication is an
abstraction:  data is not actually
transferred directly between peers
– a layer N process passes data and

control information to layer immediately
below (N-1), until lowest level is
reached

• the uppermost layer is the application:
its logic is just a protocol like any other

– below the lowest level is the wire (fiber,
radio-wave, carrier-pigeon, etc.)



2-6
Copyright © 2001 Trevor R. Grove

Layer-to-layer interfacesLayer-to-layer interfaces

• Layer N to layer N-1 (adjacent layers)
communication:
– called the “LayerN to LayerN-1”

interface specification
– defines the services offered by layer N-

1 (layer N is a user of the services)
– defines the primitive operations

available in the lower layer
• Interface specifications must define

interfaces and services clearly
– services must be well-understood and

specific
• Well-defined interfaces are critical to

allow layer-by-layer interchangeability
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Network architectureNetwork architecture

• The set of layers is called the network
architecture
– set of peer protocols
– set of layer service definitions

• The architecture specification must be
detailed enough to allow an
implementor to write code and define
interfaces

• Neither implementation details nor
interface specification are part of the
architecture
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Another analogyAnother analogy

• (From Tanenbaum, p18)
• Consider two philosophers (peer

processes on Layer 3) who wish to
communicate
– one in Kenya (PK), the other in

Indonesia (PI)
– they do not speak a common language,

so each hires a translator (peer
processes on Layer 2)

– translators each contract with a
communications engineer (peer
processes on Layer 1)
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continued...continued...

• PK wishes to convey, in philosophical
terms, affection for oryctolagus cuniculus
to peer (PI)

• PK passes a message (in Swahili) across
Layer Interface 3/2 to the translator
– translator changes the message to “I like

rabbits” or “J’aime des lapins” or “Me
gustan los conejos”, depending on  Layer
2 protocol

– both translators must agree in advance on
what the “interchange language” will be
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continued...continued...

• Translator gives the message to the
engineer (via the Layer 2/1 Interface) for
transmission by telephone, telegram,
letter or any other means
– engineers must agree in advance on the

transmission method (i.e. the Layer 1
protocol)

• When the message arrives in Indonesia,
the engineer gives it to the Indonesian
translator (via the Layer 1/2 Interface)
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continued...continued...

• The translator translates the message
into Indonesian and passes the
translated  message (via the Layer 2/3
interface) to PI
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ObservationsObservations

• Each protocol is independent of the
others

• Translators could change the Layer 2
Protocol to Dutch or Italian
– both peers must agree
– no other protocol or interface need

change
• Layer interfaces in Kenya do not have

to be the same as those in Indonesia

• The peer abstraction is crucial for all
network design
– divide the task of network design into

smaller, isolated, manageable design
problems: i.e. the design of the layers
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The ISO OSI referenceThe ISO OSI reference
modelmodel

• A layer model proposed by ISO
– OSI:  Open System Interconnect
– generally called the OSI reference

model
• Seven layers

– generally, a layer represents a change
in abstraction

– each layer function is clearly defined
– layer function should be conducive to

protocol standardization (for existing
standards or new ones)

– layer function should minimize data-
flow across layer interfaces
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Layer definitionsLayer definitions
(top-to-bottom)(top-to-bottom)

• Application:  end-user tasks like e-
mail, file transfer, remote login

• Presentation:  character-set,
language, formatting functions

• Session:  for establish long-term
connections between hosts

• Transport:  error-free host-to-host
communication; quality of service
functions; multiplexing/aggregation

• Network:  getting data through subnet
(routing)

• Data Link:  error-free frame delivery
• Physical:  transmission of raw bits on

a communications medium
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continued...continued...

• Why seven layers?
– enough to separate function, but not

too much overhead
• The OSI reference model is not a

complete network architecture:
– no specification of service interfaces

and layer protocols
– ISO has produced and published

separately a set of (independent)
standards for each of the layers
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Data transmission in theData transmission in the
OSI modelOSI model

• Sender process X sends to receiver Y
• X’s data given to Application Layer;

application header added
• Augmented data given to Presentation

Layer; presentation header added
• Augmented2 data given to Session Layer
• Etc. until the physical layer, where bits

are transmitted to Y
• Augmented7 data percolates up through

Y’s layers, removing headers along the
way
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Services and interfacesServices and interfaces

• Active parts of layers are entities
– software process
– hardware (I/O chip, etc.)

• Entities in the same layer are peer
entities:  application entities,
presentation entities, etc.

• Entities in layer N implement a service
used by layer N+1
– layer N is the service provider, layer

N+1 is the service user
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continued...continued...

• Services are available at Service
Access Points (SAPs)
– every SAP is uniquely identified with an

address
– users and application processes use

the SAPs at the top layer
– layer N entities uses SAPs at layer N-1

• Adjacent layers must agree on the
rules about using the interface
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Encapsulation andEncapsulation and
fragmentationfragmentation

• Datagrams are a protocol data unit
(PDU);  may need to be encapsulated
by lower level PDUs

• Each level may add checksums,
addresses and other information

• Each level can choose its PDU size,
and can fragment the higher-level PDU

• Conversely, a level could decide to
buffer many PDUs

• Each level must keep track of its own
sequencing and error-checking
information

• For example: a layer 3 datagram might
be segmented and packed into layer 2
frames by the sender, and unpacked
and reassembled by the receiver
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The TCP/IP referenceThe TCP/IP reference
modelmodel

• Developed by DARPA (Defense
Advanced Projects Research Agency)
branch of U.S. DoD

• Practical (military) applications
– diversely configurable
– robust

• Layered organization analogous to OSI
• Four layers (top to bottom):

– application
– transport
– internet
– host-to-network (Tanenbaum); “link

layer & LANs” (Kurose & Ross)
• Note that the reference model layer

names are not protocol names
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continued…continued…

• The reference model layers have well-
known protocols defined for them:
– application layer:

• ftp, smtp, telnet, pop, …
– transport layer:

• tcp, udp
– internet layer:

• ip
– host-to-network:

• ?  – not defined by the reference model,
use protocols like CSMA/CD, token-ring
etc.
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CommentaryCommentary

• OSI was supposed to rule, TCP/IP was
a stopgap until OSI fully deployed
– didn’t happen!

• OSI does a good job of specifying the
reference model (although some layers
seem thin, and others are overloaded)
– defines explicit separation between

services, interfaces and protocols
– good software engineering principles
– otherwise, unwieldy and inefficient?

• TCP/IP has good protocols, but the
reference model was retrofitted and
cannot realistically describe anything
else

• See Tanenbaum Ch 1.4.3, 1.4.4 and
1.4.5
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The little pictureThe little picture

Or, now that we’ve seen the big
picture frameworks, look at some

of the details of the issues and
problems to be handled
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Design issues for layersDesign issues for layers

• For all layers:
– definition of peer protocol
– addressing scheme (how to identify the

peer)
– conversation management (initialize,

finalize)
– definition of data unit:

• packet, datagram, file, frame, etc
• For only some layers:

– error detection/correction
– message ordering
– flow control
– data fragmentation/aggregation

between layers
– multiplexing
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Terminology andTerminology and
technology definitionstechnology definitions

• Analog vs digital information and
signalling
– modems vs codecs
– carrier modulation vs pulse-coded

modulation
• Multiplexing
• Baseband vs broadband
• Broadcasting vs point-to-point
• Full and half duplex
• Circuit-switched vs packet-switched again
• Datagrams vs virtual circuit
• Network physical organization & topology
• Routers, bridges and subnets
• References:

– Tanenbaum: Ch 1.3.4, 2.4.5, 5.1.1
– Kurose & Ross: Ch 1.1, 1.3.2, 1.4, 1.5.2,

5.5.1, 5.6.2
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Analog vs digitalAnalog vs digital

• Analog information:  waveforms e.g.
voice, audio tape, radio, video

• Digital information:  binary-represented
• Analog signalling: encoding the

information into an analog carrier wave
by modulation (frequency, amplitude or
phase)
– digital information:  use a modem to

convert to analog
– analog information:

• voice telephone; AM and FM radio
• Digital signalling:  represent binary

information with low-high voltages (e.g.
0,+5 or ±5)
– analog information:  use a codec to

convert to digital (pulse-coded
modulation)

– digital information: Manchester encoding
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MultiplexingMultiplexing

• Sending multiple messages through a
single communications channel

• Frequency-division multiplexing (FDM):
– all Ai messages sent simultaneously
– each Ai uses a different electrical / radio

frequency (ie analog)
• Time-division multiplexing (TDM):

– each process Ai has a turn using the full
capacity of the path

– path is divided into slots or equal duration;
each process can use its slot or not
(synchronous usage based on clocking)
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...multiplexing, 2...multiplexing, 2

• Statistical multiplexing (SMUX)
– like TDM, based on taking turns to use

entire capacity of path
– not synchronous;  processes “queue”

messages at multiplexer
– messages are sent according queue-

processing rules (first-come-first serve,
priority, etc.)

– if messages arrive at multiplexer faster
than sending rate, queue builds and
throughput decreases, otherwise each
process has perception of a private path

• FDM implies broadband, most applicable
with analog signalling

• TDM takes turns using medium, useful for
baseband

• SMUX is a form of TDM (irregular slot
usage), same applicability
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Baseband vs broadbandBaseband vs broadband

• Baseband:
– digital signalling
– signal uses small portion of available

electromagnetic spectrum
• Broadband:

– signalling using large part of available
spectrum

• historically referred to analog systems,
also applicable to digital systems

– many simultaneous channels (uses
FDM to put each channel at different
frequency)

– cable TV, satellite
– does not simply mean high-capacity,

despite popular-press usage
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Half-duplex vs. full-duplexHalf-duplex vs. full-duplex

• Duplex refers to the capability of which
hosts can transmit and when
– half-duplex means that a host cannot

send and receive at the same time
– full-duplex means that a host can

transmit which it is receiving (and v.v.)
• A full-duplex transmission is one in

which both ends can be transmitting
and receiving simultaneously

• In a half-duplex transmission, one host
is receiving and the other is
transmitting
– the roles change, perhaps often

• Duplex can refer to physical media and
also higher-layer communication
– e.g. at the application layer, “who

sends and receives when” is a
significant part of the app. protocol
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Broadcast vs point-to-Broadcast vs point-to-pointpoint
transmissionstransmissions

• Broadcasting:
– shared medium, not secure
– data must be addressed
– recipients must be listening for their

data
– multicasting:  subgroups of recipients

• Point-to-point:
– private connection
– path must established before use
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Circuit- vs packet-switchedCircuit- vs packet-switched

• Circuit-switched:
– a point-to-point path constructed from

smaller circuits
– circuit is dedicated, may be wasted
– circuit must be established and

disconnected
– circuit can contain be any combination of

(analog or digital) X (signals or data)
• Packed-switched:

– digital only
• items that are switched are PDUs:

packets, frames, datagrams, …
– data string is divided into packets
– packets are sent individually
– “store-and-forward”
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Datagrams vs virtualDatagrams vs virtual
circuitscircuits

• In a packet-switched network, different
kinds of services may be available:
– datagram service
– virtual circuit

• Datagram service:
– form of connectionless service
– datagrams are independent units
– datagrams are routed independently
– arrival order not guaranteed
– choice in quality of service:

• reliable – datagrams are ACKed
– higher cost, delays possible

• unacknowledged service
– lower cost, less protocol interaction
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… datagrams vs virtual circuits, 2… datagrams vs virtual circuits, 2

• Virtual circuits (“VC”):
– a connection-oriented service
– application requests a route or fixed

connection
• similar to circuit establishment in circuit-

switched networks
– virtual circuit is identified by circuit

number
• subsequent datagrams are addressed via

the circuit number
– all datagrams follow same route

• usually, network conditions
– high-quality service – datagrams are

guaranteed to arrive in order
– circuit functionality distinct from raw

datagram delivery (different layer)
– bi-directional
– PVC:  permanent virtual circuit; SVC:

switched virtual circuit
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Connectionless vs.Connectionless vs.
connection-orientedconnection-oriented

servicesservices
• Applications have two basics services

available to implement application logic
& protocols:
– connect-oriented
– connectionless

• Connection-oriented (“CO”):
– requires initial protocol “handshake”

• each end system is aware of the other
– generally higher level of service
– e.g. Internet CO is reliable, guaranteed

order, flow control, congestion control
• Connectionless (“CL”):

– no handshake, no awareness
– generally lower service level
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Circuit, packet, CO, CL,Circuit, packet, CO, CL,
datagram, VC –datagram, VC –

??????
• Lots of terminology – somehow related

– circuit-switching vs. packet-switching
refers to basic network plumbing

– CO Vs CL characterizes services
available to applications

– datagram vs. VC characterizes the way
data moves through network

• refer to network as “datagram network”
or “VC network”

• A picture:
Kurose & Ross
Figs 1.13-1.15 Telecommunications

networks

Circuit-switched
networks

FDM

Datagram
networks

VC
networks

CO
 services

Packet-switched
networks

TDM

CL
 services
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Reliable vs. unreliable dataReliable vs. unreliable data
transfertransfer

• “Reliability” has specific meaning:
– correct sequence (of datagrams)
– based on acknowledgements and

automatic retransmissions
– most applications (presumably) need

reliable transmission, the question is
which layer(s) provide the reliability

– virtual circuit networks are usually
reliable

• “Unreliable” means:
– datagrams might arrive, might not
– if they arrive, might be in the wrong

order
– datagram networks are often unreliable
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Network physicalNetwork physical
organizationorganization

• Historically, computer networking divided
the network world into:
– wide-area networks (WANs)
– metropolitan-area networks (MANs)
– local-area networks (LANs)

• These were differentiated by scale and
connectivity technology:
– all are packet-switching networks
– generally, LANs use broadcasting and WANs

use point-to-point
• LANs (>1Mbits/sec) using Ethernet™ or

Token-ring, etc
– used in geographically-restricted areas

because of technology limitations
– cheap
– used in office / classroom / commercial

environments, forming groups of related usage
– before Ethernet/TokenRing, LANs were

created using other technologies, including
serial, parallel
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…network physical organization, 2…network physical organization, 2

• WANs based on continental backbones
(>100Mbits/sec)
– collections of point-to-point circuits
– big players:  telcos, satellite, microwave
– used over geographically large areas to

connect LANs
– “fractional” services available from

providers for private leasing
– various commercial products defined

• MANs had been a curiosity (special-
purpose hybrids) but are becoming more
relevant:
– availability of “dark fiber” from many

sources
– use of cable TV infrastructure
– both can provide cost-effective LAN-like

speeds (or better) over municipal-sized
areas



2-40
Copyright © 2001 Trevor R. Grove

…network physical organization, 3…network physical organization, 3

• Terms like LAN, WAN are less
important in the context of the Internet
– the Internet is a multi-tier infrastructure

of connections
– its fundamental purpose is to connect

smaller networks together; i.e. a
network of networks

• connectivity between the networks is
the “Internet”

– what is of interest is how to connect to
that infrastructure

• via LAN (e.g. corporate, education)
• via dialup (standard POTS, ISDN or

dedicated private links) via dedicated
MAN-sized technologies like ADSL
(Bell high-speed) or cable (@Home)

• via wireless
• etc.

• Kurose & Ross Ch 1.5.1 & 1.8
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Network topologiesNetwork topologies

• The Internet and its constituent networks
have specific topologies (organization)

• The continental infrastructure is formed
from point-to-point links (optical fiber
technology typically)
– major links are constructed and operated

by NSP (national service providers)
– NSPs connect to each other at NAPs

(network access points)
– each connection is made according to

performance and capacity requirements
– every NAP does not connect to each

other, hence the topology graph of the
Internet is not complete

– NSPs provide connections for regional
and local ISPs in a multi-tier fashion

• Kurose & Ross Fig. 1.26
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…network topologies, 2…network topologies, 2

• LANs are organized quite differently
• LANs attempt to provide a complete

graph of connectivity
– every host in a LAN is connected to every

other host (conceptually a complete
graph)

– referred to as “shared medium”
– physical topology is a LAN need not be

the same as the conceptual connectivity
topology

• Ethernet LANs can be implemented with a
star-shaped cabling system or a
continuous loop cable or wireless

• Token-ring LANs are implemented
electrically as a sequence of point-to-point
cables, but may be cabled as a star

• Topology of ISP connectivity varies
– star for dialup, ADSL and other telco
– shared for cableco (bus)
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LAN topology:  busLAN topology:  bus

• Analogous to antenna; any host can
transmit at any time; all hosts receive all
traffic

• Contention:  hosts might transmit
simultaneously
– Contention resolution via CSMA/CD or

Ethernet™
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LAN topology:  ringLAN topology:  ring

• Only one host can transmit at any time
• Host must possess the “token” to

transmit, hence “token ring”
• Token circulates continuously until a host

takes possession to begin transmitting:
– idle hosts must propagate the token
– token flow is unidirectional over the

sequence of host-to-host (point-to-point)
connections



2-45
Copyright © 2001 Trevor R. Grove

LAN topology:  starLAN topology:  star

• Any station can transmit at any time
• Central hub or switch handles all

traffic, contention
• Star might be just a wiring

convenience for bus or ring, not a
different conceptual topology
– depends on the hardware in the middle

Hub



2-46
Copyright © 2001 Trevor R. Grove

Routers, bridges andRouters, bridges and
subnetssubnets

• Router:  any computer or node with a
primary function to facilitate data
transmission.
– connects LANS of possibly differing type;

form WANs with point-to-point
connections

– also called: packet-switching node, data-
switching exchange, intermediate system

• Bridge:  connects LANs.  LANs may be
similar or differing types; may be
physically close or remote

• Subnet:  collection of routers and
communications channels
– a network that is connected to other

networks (to form an internet)
– any identifiable portion of a network
– subnetting:  the process of subdividing a

network
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Layer design –Layer design –
issues to be handledissues to be handled

• Computer networks and communications
systems are complex
– complexity largely due to error detection
– techniques/algorithms exist to solve

these problems
– not all issues are solved in each layer

• References:
– Kurose & Ross Ch 5.2, 3.4, 3.5.2, 1.6
– Tanenbaum, Ch 1.3.3, Chapter 3
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The problemThe problem

Host system

Network routing device
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…the problem, 2…the problem, 2

• How to send a large document to
someone on another computer on the
network, from A to B

• Assume that the receiver has
secondary storage (disk) capable of
storing the document

• Standard method:  divide document
into small units
– units are usually equally-sized
– units are packets or datagrams

• datagrams is the preferred term in
general discussions about application
data

• packet is usually reserved for a specific
class of data structure
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Why datagrams?Why datagrams?

• Errors will not cause re-transmission of
entire document (better granularity)

• Efficient use of medium:
– sender may not be able to send

continuously
– dedicated use of medium for entire

document may not be possible (or
expensive)

– datagrams from many senders (or
sender’s processes) can be
multiplexed on a single medium
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Transmission issuesTransmission issues

• Acknowledgement:
– how do we know a datagram has

arrived at the destination?
• Quality and flow control:

– do all datagrams need to be
acknowledged?

– how many datagrams can and should
be sent (be in transit at the same
time)?

– what if the receiver is too slow or does
not have enough memory?

– how does the sender not overwhelm
the receiver?



2-52
Copyright © 2001 Trevor R. Grove

… transmission issues, 2… transmission issues, 2

• Errors:
– how do we detect and correct errors in

datagrams?
• Making datagrams:

– how do we divide the document into
datagrams?

• Addressing:
– how do the datagrams arrive at the

correct destination?
– (“correct destination” implies computer

and application program on that
computer)

• Routing:
– how is the “correct” route chosen for a

datagram?
– is there a correct route?
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… transmission issues, 3… transmission issues, 3

• Re-assembly:
– how do we re-assemble the document

from the sequence of datagrams?
– Note:  datagrams may not (probably

won’t) arrive in order
• Decisions to be made:

– how and when do all these decisions
get made?

– what is the address of a computer?
– what is the datagram size?
– what is the route through the network?
– when is a datagram correct?
– when has a datagram arrived?
– …
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AcknowledgementAcknowledgement

• How do we know if a datagram has
arrived?
– receiving computer sends back a

datagram indicating correct arrival.
Called an acknowledgement (ACK)

– ACK datagram contains sequence
number of received datagram

– receiving computer can also send a
datagram indicating the received
datagram has a content error – called a
negative acknowledgement (NAK)
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…acknowledgement, 2…acknowledgement, 2

• What happens if a datagram does not
arrive?
– receiving computer has no knowledge

it was sent
– sending computer waits a while for an

ACK
– if it does not arrive, sender re-sends

the datagram
– waiting time called a time-out or time-

out period
• What if the first (NAKed) datagram

then arrives?
– duplicate message at receiver

• What if…
• What if...
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… acknowledgement, 3… acknowledgement, 3

• Is an ACK always necessary?
– an ACK adds to the cost of

transmission
– does every datagram need an ACK?

• For example:
– electronic junk-mail

• does the sender care if there are a few
errors that are undetected?

• probably not:  want large coverage at
low cost, not complete coverage at high
cost

– streaming media
• does loss of a few datagrams have a

material effect on the overall media
presentation?

• probably not:  perceived as a tiny
“glitch” in the content
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Document  size andDocument  size and
datagramsdatagrams

• Problem:  how to divide a document into
datagrams

• Example:
– 100,000 character (byte) document;

arbitrarily choose datagram size of 1000
bytes

– assume 10,000 characters/sec
transmission facility

– one second for a signal to travel from the
source to the destination (propagation
delay)

• Observations:
– document can leave sender in

100,000/10,000 = 10 sec
• transmission delay or store & forward

delay
– entire document arrives at receiver 1

second after last character leaves sender
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… document size and datagrams, 2… document size and datagrams, 2

• Total transmission time for non-
datagram document:
– transmit time:  10 + 1 = 11 seconds
– plus time for ACK:  transit time + ACK

time = 11 + 1 = 12 seconds
– (assume ACK is so small that time to

send is negligible)
• Datagram transmission:

– 100,000 byte document / 1,000 bytes
per datagram = 100 datagrams

– transmit time for one datagram:
1,000 B per dg / transmission speed +
signal delay
1/10 + 1 = 1.1 seconds

– plus ACK time: 1.1 + 1 = 2.1 seconds
– time for 100 datagrams: 2.1. x 100 =

210 seconds (!)
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… document size and datagrams, 3… document size and datagrams, 3

• Performance penalty is huge:  factor of
~17

• Compromise solution:  send n datagrams,
then stop and wait for an ACK

• Example 1:  send 10 datagrams before
waiting for ACK
– total transit time for 10 datagrams:

10 x (1,000/10,000) + 1 = 2 seconds
– plus time for one ACK: 2 + 1 = 3 seconds
– time for 10 groups of 10 datagrams: 10 x 3

= 30 seconds
• Example 2: 20-datagram groups

– total transit time for 20 datagrams:
20 x (1,000/10,000) + 1 = 3 seconds

– plus time for one ACK: 3 + 1 = 4 seconds
– time for 5 groups of 20 datagrams: 5 x 4 =

20 seconds
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DiscussionDiscussion

• In an error-free environment:
– best case: 12 seconds
– worst case: 210 seconds

• Datagram grouping has a significant
effect

• What about datagram size?
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Flow controlFlow control

• Problem:  the sending computer is
sending a sequence of datagrams

• It is possible that the receiving
computer will run out of buffer space
– must be able to stop sending computer
– must be able to restart sending

computer
• Called “Flow Control”
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A flow-control protocolA flow-control protocol

• Number each datagram for the document
sequentially from 1 to N
– datagrams are labelled D:i (the ith

datagram)
• The receiving computer tells the sending

computer the maximum number of
datagrams that the receiver can handle –
the so-called window size W

• The sending computer sends datagrams
numbered from D:i up to D:i+(W-1)
– eg for W=4 and i=1 initially, can send D:1

to D:4
• Assume that datagrams are delivered in

order
• Receiver ACKs a sequence of datagrams

by indicated the number of the next
datagram expected in the sequence to
maintain sequential order
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… a flow-control protocol, 2… a flow-control protocol, 2

• If:
– the last ACK was for D:i (or D:1 to start)
– the last sender sequence stopped at D:j
– an ACK:k (request for D:k) is received

• Then:
– Transit=j-i+1 datagrams were in transit

before the ACK:k, starting at D:i
– Available=W-(j-i+1) slots were left over

once all the in-transit datagrams arrived
– Freed=k-i slots have now been freed

(datagrams D:i to D:k-1 have been
consumed)

– there are (j-k+1) DGs still in transit
(unconsumed); W-(j-k+1) datagrams can
be put in transit now, starting at D:j+1

• Sending computer is implicitly controlled:
if W frames are sent without
acknowledgement, the sender must stop

• This protocol is the Sliding-Window
Protocol or sliding-window flow-control
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Sliding-window protocolSliding-window protocol
Sender A Receiver B

1 2 3 4 5 6 7 8 9 10 11 ...
May Send 7

May Receive 7

3 4 5 6 7 8 9 10 11 ...
Shrink Window by 3
May Send 4 more

1 2 3
3 DGs Received
Can Receive 4 more

4 5 6 7 8 9 10 11 ...
ACK Received
Expand Window by
ACK 4 - ACK 1 = 3 free
May Send 7 Expand Window by

ACK 4 - ACK 1
May Receive 7

10 11 12 ...
Shrink Window by 6
May Send 1 more

10 11 12 ...
ACK Received
Expand Windows by
ACK 5 - ACK 4
May Send 2

4 5 6 7 8 9 
6 Received
Can Receive 1 more

      5 6 7 8 9 
Expand Window by
ACK 5 - ACK 4
May Receive 2

1, 2, 3

ACK 4

4, 5, 6
7, 8, 9

ACK 5

1,2, 3 consumed

4 only consumed
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ErrorsErrors

• Regardless of design, there will always
be errors in a data-transmission system

• Any practical system must be able to
detect errors

• Basic idea:
– consider data to be transmitted as a

sequence of bits, divided into frames
(short sequences e.g. 8, 16, 32 or 128
bits)

• frame:  another term analogous to
packet, datagram

– add extra, redundant bits to frame to
detect errors

– extra bits are calculated as a function of
the bits in the frame

• original bits plus extras are transmitted
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continued...continued...

• Receiver:
– receives augmented frame and

separates original frame from extra
– repeats the extra-bit calculation and

compares “received extra” with
“calculated extra”

– if same, frame is error-free
– if error, notify for retransmission (NAK)

• Several standard methods:
– parity check
– longitudinal redundancy check (LRC)
– cyclical redundancy check (CRC)
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Parity check error detectionParity check error detection

• Simple method for small amount of
data

• Count number of one-bits; if odd, add
one more one-bit to make even:

Peven B1 B2 B3 B4 B5 B6 B7  B8
 1 0 1 1 0 0 1 0   0

Peven B1 B2 B3 B4 B5 B6 B7  B8
0 0 1 1 1 0 1 0   0

– this is “even parity”



2-68
Copyright © 2001 Trevor R. Grove

continued...continued...

• Or, if the number of one-bits is even,
add one more one-bit to make odd:

Podd B1 B2 B3 B4 B5 B6 B7  B8
0 0 1 1 0 0 1 0   0

Podd B1 B2 B3 B4 B5 B6 B7  B8
1 0 1 1 1 0 1 0    0

– this is “odd parity”
• Parity-checking works only for single-

bit errors; errors in two or more bits
may not be detected

• In principle, could count zero-bits, too
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Longitudinal redundancyLongitudinal redundancy
checkcheck

• Also called “block-sum check”
• Extension of parity checks to blocks of

data
• Will handle some two-bit errors
• Basic idea:

– arrange a group of frames to form a
rectangular block

– add parity to rows, as usual
– add a new row after the existing rows,

composed of parity bits for the columns
• One bit will be ambiguous (parity of

parity) – choose meaning arbitrarily
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continued...continued...

• Podd B1 B2 B3 B4 B5 B6 B7 B8
1 0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0
0 1 0 0 0 1 1 0 0
0 0 1 0 0 0 0 0 0
1 0 1 0 1 1 0 1 0
0 1 0 0 0 0 0 0 0
1 1 1 0 0 0 1 1 0
1 1 0 0 1 0 0 0 0

     Parity
0 0 0 0 1 0 0 0 0   ← row

• Rows are odd parity, columns are even
parity (or vice versa)

• Bottom-left is ambiguous, arbitrarily
choose row representation (odd)
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Cyclic redundancy checkCyclic redundancy check
(CRC)(CRC)

• Given a message frame M that is k bits
in length, add a checksum (error-
detecting code) of length n bits to the
end of the frame

• Formally called a  Frame Check
Sequence (FCS)

• The checksummed frame M' now has
k+n bits (M' is  2nM + FCS; + is modulo-
2 (XOR))

• Basic idea:  choose FCS such that  M' is
divisible (no remainder) by some divisor
D (modulo-2 long division)
– sender and receiver agree in advance

on D
– sender computes FCS and constructs M'

and sends
– receiver computes M' / D; remainder = 0

⇒  no error
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continued...continued...

• How is the FCS defined?
– remainder(2nM / D)

• How is D chosen?
– FCS must be no more than n bits
– length(D) < length(M)
– FCS is a remainder, so choose D with

n+1 bits and high-order bit 1
– low-order bit 1
– prime (?)

• Concatenate M and FCS to form M' :
2nM - FCS
– Assert: M' is divisible by D
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Choices for CRC divisor DChoices for CRC divisor D

• Sender and receiver must agree in
advance

• Notation:  D is a generator
polynomial G(x)
– 0 or 1 bits in D denote the presence or

absence of terms in G(x)
– Example:

G(x) = x5 + x4 + 1  denotes D = 110001
• Some international standards for

choices for G(x):
• CRC-12 is x12+x11+x3+x2+x1+1

(1100000001111)
• CRC-16 is x16+x15+x2+1

(11000000000000101)
• CRC-CCITT is x16+x12+x5+1

(10001000000100001)
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CRC effectivenessCRC effectiveness

• Representing M, M’ and D as
generator polynomials allow detailed
error analysis
– Examples: probabilities of detecting

single-, double-bit errors, burst errors,
multiple scattered errors, etc.

– (ref: Tanenbaum)
• Speed & space considerations:

– calculations can be done with shift-
register hardware

– 1000-bit frame with CRC-16 incurs only
1.7% space overhead
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continued...continued...

Error type CRC-16 Probability 
of detection

CRC-32 
Probability of 

detection
single bit 1 1
two bits not necessarily 
together 1 1
odd number errors 1 1
burst error < CRC size 1 1
burst error = CRC size 1 - 1/215 1 - 1/231

burst error > CRC size 1 - 1/216 1 - 1/232
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Error correctionError correction

• Many potential errors:
– CRC/checksum failure
– timeout
– flow-control/sequencing (missing data)

• Recovery must be automatic:  typically
requires retransmission of some data

• Called ARQ mechanisms: Automatic
Repeat reQuest

• “stop-and-wait” ARQ:  for one
datagram at a time flow-control

• “go-back-N” ARQ:  for sliding-window
flow-control
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Names, addresses & portsNames, addresses & ports

• Computers have names:
– csg.uwaterloo.ca
– www.microsoft.com

• Names only denote/identify the
computer:  they say nothing about
where the computer is, or how to get
to it

• Naming scheme governed by central
authorities
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continued...continued...

• Networks have addresses; computers
connected to the network have
addresses

• The address defines the location
• Addresses are typically numeric

– E.g. internet (tcp/ip):
129.97.208.19

• 129.97 is the network address
• 208.19 is the computer address on that

network
• Networks know how to reach other

networks; an individual network knows
how to reach its computers

• Will require name-to-address mapping
(to be discussed later)
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continued...continued...

• Programs are also addressable
• Program addresses are ports or

sockets or service access points
(SAPs)

• Every SAP has a unique address on a
computer

• SAPs are the endpoint of all services
– all communications in both directions is

done via a SAP
– a datagram arrives at the computer and

is sent to a SAP, where a program can
process it

– programs send a datagram through a
SAP to another computer
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Datagram contentsDatagram contents

• Messages (documents) for transfer are
divided into fixed-size units: datagrams,
packets, frames, segments, …
– “official” generic term:  Protocol Data

Unit (PDU)
• PDUs must contain all necessary

protocol information:
– addresses: source and destination
– addresses: computer, SAP
– sequence number
– error detection/correction (checksums)
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Example Example PDUPDU

• TCP
• In this example, datagrams are

program-to-program, hence port
addresses are used


