
6-1
Copyright © 2001 Trevor R. Grove

ApplicationsApplications

Architectures
Security Issues

The Web

6-2
Copyright © 2001 Trevor R. Grove

OverviewOverview

• Client-server architectures
– message-passing
– remote procedure calls

• Security
– cryptography

• Example distributed system: the world-
wide web

• References:
– Kurose & Ross: Ch 2.1
– Tanenbaum: Ch 7.1, 7.6
– Also:

• Computer Networks and Internets,
Second Edition; Douglas Comer;
Prentice-Hall, 1999; ISBN 0-13-083617-6

• Business Data Communications, Third
Edition; Stallings & Van Slyke; Prentice-
Hall, 1998; ISBN 0-13-594581-X

6-3
Copyright © 2001 Trevor R. Grove

Characteristics of aCharacteristics of a
distributed systemdistributed system

• Resource sharing
– sharing hardware, software, data
– resource management

• Openness:
– standardized interfaces
– vendor and op-sys independence

• Concurrency
• Scalability

– as the demand for a resource
increases, extend (add more)

– counter-example: IP addresses
• Fault tolerance (availability)

– adaptation to & recovery from errors
• Transparency

– users should not be aware of the
“distributedness”

6-4
Copyright © 2001 Trevor R. Grove

Resource sharingResource sharing

• Client-server model:
– resources have managers, users
– servers are the resource managers,

clients are resource users
– clients send messages to servers;

server returns results
• Object-based model:

– resources are objects (data, code) with
message-handling interface

– object managers for classes of objects
– clients send messages (invoke object

methods), manager returns results (set
properties of objects)

• virtually the same as procedural client-
server interfaces, although some object
paradigms make method invocation
implicit (instantiating the object invokes
initialization methods that sent
messages to object managers)

6-5
Copyright © 2001 Trevor R. Grove

Client-serverClient-server model model

• Varying divisions of work between
clients and servers

• Host-based processing:
– all server, no client; eg mainframe and

dumb terminals
• Server-based:

– server does all computation, client
does only presentation (eg GUI)

• Client-based:
– client does as much as possible, server

acts as central repository only
• Coöperative

– “rational” balance between client and
server

• Choice depends on workload,
capability, availability etc.

6-6
Copyright © 2001 Trevor R. Grove

… client-server, 2… client-server, 2

Presentation logic

Application logic

Database logic

DBMS

Server

Application logic

Database logic

DBMS

Application logic

Database logic

DBMS

Database logic

DBMS

Host-based processing

Server-based processing

Coöperative processing

Client-based processing

Client

Presentation logic

Presentation logic

Application logic

Presentation logic

Application logic

Database logic

6-7
Copyright © 2001 Trevor R. Grove

… client-server, 3… client-server, 3

• Characteristics of client software
– perceived as “the application” by user,

need not be aware of “distributedness”
• eg RealPlayer

– client initiated directly by user
• client initiates contact with one or more

servers, as required
– executes at user’s computer
– runs as a standard program within the

context of standard operating-system
facilities

6-8
Copyright © 2001 Trevor R. Grove

… client-server, 3… client-server, 3

• Characteristics of server software
– initiated automatically by operating-

system startup sequence
– handles many clients simultaneously
– waits (blocking wait) to be contacted by

clients
• processes incoming client requests by

responding to messages at
predetermined Service Access Points

– usually offers a single service
– usually runs on dedicated hardware,

possibly running special-purpose
operating-system

• “server-class” system
• generally not the same as user

workstations
• “Personal servers” are somewhat

oxymoronic, but legitimate and useful

6-9
Copyright © 2001 Trevor R. Grove

… client-server, 4… client-server, 4

• Server handle multiple clients
simultaneously
– servers normally have only one well-

known SAP
– how can multiple clients be handled?
– clients contact server at the well-known

SAP, then are “handed off” to another
access point

• requires that servers be able to create
client-handling processes or threads
dynamically

– servers can provide the same function
through different protocols

• classic example is a server that
provides service through both TCP and
UDP ports, giving clients a choice

6-10
Copyright © 2001 Trevor R. Grove

… client-server, 5… client-server, 5

• Basic decisions to be made in creating a
client-server system
– what division of work?

• where does the application logic reside?
– what are the message formats and

application protocols?
– what transport services will be required?

• connection-oriented or connectionless?
• if CL, reliable and in-order or not?

– if not, must handle in the application
– what will be the SAPs for the server side?
– what non-standard services might be

required?
• assuming a TCP/IP reference model, are

there any services that would be classified
as presentation or session?

– are there any proprietary layers or
sub-layers that can do the work?

6-11
Copyright © 2001 Trevor R. Grove

MiddlewareMiddleware

• In making the basic decisions,
implementor will be re-implementing
the same basic processes over and
over
– eg if there are common non-standard

services required by applications
– database-driven client-server systems

have many common features
• Software engineering principle:

whenever one is re-implementing,
think: generalize, package,
parameterize
– in distributed and network-based

systems, this means “think layer”

6-12
Copyright © 2001 Trevor R. Grove

… middleware, 2… middleware, 2

• Recall the example division of client-
server systems (coöperative):

• The highlighted region tends to be
duplicated in many applications, and
can be isolated into a sub-layer or
semi-layer
– called middleware, or the middleware

layer
– middleware provides a standard set of

services for the implementation of
client-server applications

Application logic

Database logic

DBMS

Server

Presentation logic

Application logic

Client

6-13
Copyright © 2001 Trevor R. Grove

… middleware, 3… middleware, 3

• Picture:
From: Stallings & Van Slyke, Fig 14.8

• Application services include database
servers

6-14
Copyright © 2001 Trevor R. Grove

… middleware, 4… middleware, 4

• In commercial middleware, the reach
of the services extends to database
services and networking platforms
– defines a standard interface between

applications and databases,
applications and network services

• by building products with a modular
architecture, different plug-in modules
provide interoperability and
independence between database and
networking products

From Stallings & Van Slyke, Fig 14.9

6-15
Copyright © 2001 Trevor R. Grove

ImplementationImplementation

• How are client/server applications and
middleware layers implemented?

• Message-passing:
– send, receive

• blocking (synchronous) or non-blocking
(asynchronous)

• reliable vs unreliable
– puts the work in the protocols

• Remote Procedure Call (RPC):
– encapsulate message-passing (reliable,

blocking) with standard procedure-call
– calling a procedure elsewhere

• client calls a local procedure, which uses
send/receive to communicate with
procedure on server

• values can be returned as usual
– function-shipping: send the code to be

executed
• eg Java, PostScript

6-16
Copyright © 2001 Trevor R. Grove

… implementation, 2… implementation, 2

• Object-oriented methods:
– client and server are objects that

exchange messages
– to request a service, a client object

contacts an object request broker
• broker has a list of all available servers

(i.e. acts as a directory), locates
available server objects, and passes
along the service request

– object communications can be RPC-
based, message passing or use
operating-system object paradigm (if
available)

6-17
Copyright © 2001 Trevor R. Grove

Current buzzwords trendsCurrent buzzwords trends

• COM, OLE, DCOM, COM+: Microsoft
– COM: Component Object Module;

operating-system software architecture
– OLE: Object Linking and Embedding; object

interaction on a single system
– DCOM: Distributed COM
– COM+: combination of COM & DCOM

• DCE: Open Software Foundation
– DCE: Distributed Computing Environment;

RPC-based middleware; a.k.a. DCE/RPC
• CORBA: Object Management Group(OMG)

– CORBA: Common Object Request Broker
Architecture

• Plus:
– ActiveX: GUI objects based on COM
– ADO (ActiveX Data Objects): data and

database access based on ActiveX
– SOM, DSOM: IBM OS/2’s attempts
– RDO, RDS, MDAC, blah blah blah …...

6-18
Copyright © 2001 Trevor R. Grove

SecuritySecurity

• Distributed systems are especially
susceptible to unauthorized access
– the only really secure system is one

with no networks or terminals, housed
in a locked room

– for useful commercial distributed
systems, some form of protection
against security threats is required

• Security threats (system perspective):
– passive: end-users are (probably)

unaware; eavesdropping or monitoring
– active: interruption or modification of

services or messages
• Security threats (user perspective)

– secrecy: keeping messages secret
– authentication: verifying identities
– (non)repudiation: proving message

transmission
– integrity: message correctness

6-19
Copyright © 2001 Trevor R. Grove

… Security: system threats… Security: system threats

• Passive threats:
– others recording or reading messages
– others publishing message contents
– monitoring traffic source/destination,

patterns (length, frequency)
• Active threats:

– inserting false messages
– modifying (delete, delay) messages
– impersonating an authentic user or

host system
– denial or hindering service

• Passive threats are hard(er) to detect,
but easy(ier) to prevent

• Active threats are easy(ier) to detect,
but hard(er) to prevent

6-20
Copyright © 2001 Trevor R. Grove

… Security: system threats, 2… Security: system threats, 2

• Denial/hindrance of service can be just
as damaging as falsifying or stealing
information
– packet storms: attacker sends constant

stream of messages to the point of
overloading host’s ability to process

• messages themselves can be legitimate
eg ICMP, DNS

• many attackers (thousands) can join
together to create an overwhelming storm

– no general solution, but some measures
are possible

• gateway or firewall to discard unwanted
protocols

• address filtering – discard packets based
on origin

6-21
Copyright © 2001 Trevor R. Grove

… Security: user threats… Security: user threats

• Secrecy:
– ensuring that message content is

viewable only be intended recipients
• Authentication:

– ensuring that senders and recipients
are who they claim to be

– providing a “signature” mechanism
• Integrity:

– ensuring that message content is not
modified or falsified completely

• Non-repudiation:
– preventing a sender from denying

content of a message
• eg “that’s not my signature”

6-22
Copyright © 2001 Trevor R. Grove

Physical securityPhysical security

• System threats (active, passive) require
access to communications channels
– passive requires only observation
– active requires direct intervention

• Choice of physical media affects
security:
– copper-based cable is easy to tap

passively (cables radiate EM),
somewhat harder to tap actively

– fiber-optic is extremely difficult to tap
– radio-based (microwave, satellite) trivial

to tap passively, active can be done but
is non-trivial

• 802 LANs: “promiscuous” mode allows
receiver to get all frames

6-23
Copyright © 2001 Trevor R. Grove

CryptographyCryptography

• Basis for most security in distributed
systems is cryptography
– encoding messages so that only the

intended recipient can read
• Two phases:

– encryption: sender encodes message
prior to transmission

– decryption: recipient decodes (undoes
encoding) after reception, prior to reading

• Cryptography is an “ancient science”
(2000+ years); computing has advanced
the field tremendously

• All methods are variations on:
– substitution: replacing pieces of text with

other pieces
– transposition: changing the order of text

• Two methods dominate today: single-
key and public-key

6-24
Copyright © 2001 Trevor R. Grove

… cryptography, 2… cryptography, 2

• Terminology:
– plaintext (P): message prior to encryption
– ciphertext (C): message after encryption
– key: additional input to encryption &

decryption functions
– encryption function notation:

C = Ek(P)
– decryption function notation:

P = Dk(C)
– decrypting an encrypted message:

Dk(Ek(P)) ⇒ P
(ie the encryption and decryption
functions are inverses of each other)

• Example functions:
Ek: C = P × k; encryption

where P is a numeric version of the text
and k is the key

Dk: P = C ÷ k; decryption

6-25
Copyright © 2001 Trevor R. Grove

Single-key encryptionSingle-key encryption

• Also called private-key, symmetric-key
• Basic idea:

– sender encrypts, receiver decrypts with
the same key, which must be kept
secret; “shared secret” system

• Many variations, eg:
– “one-time pad”: set of keys, different

key for each message, used only once
• Best-known is the DES (Data

Encryption Standard):
– developed by IBM, standardized by US

government (1977)
– many allegations about NSA influence

on key length (ie ability to “crack”),
“backdoor” functions

– key length reduced from 128 to 56 bits
– not secure today, but still useful in

many circumstances

6-26
Copyright © 2001 Trevor R. Grove

… single-key encryption, 2… single-key encryption, 2

• DES is secure for medium security, but
definitely can be broken by “exhaustive
enumeration”
– 56-bit keys means 7×1016 keys
– hardware-based solutions can search

all possible keys in hours or days
• Double encryption (56-bit keys twice)

sounds good (2112 ≅ 5 ×1033 keys), but
has been shown to be no more
effective than single (ref: Tanenbaum)

• Triple encryption (using only two
different keys) appears to be secure
today

6-27
Copyright © 2001 Trevor R. Grove

… single-key encryption, 3… single-key encryption, 3

• Problems with DES:
– insecure for determined “crackers”
– key management

• Key management: consider
– group of n users, each of whom wants

to communicate with each of the others
– needs lots of keys:

– for n=1000:

– managing 500,000 keys is nightmarish:
consider just the initial delivery

2
)1(12...)2()1(

1

−≡≡+++−+− ∑
=

nninn
n

i

000,500
2

)999(1000 =

6-28
Copyright © 2001 Trevor R. Grove

Public-key encryptionPublic-key encryption

• Quite different from private-key methods
• Each user U has two keys
• Notation:

– EU is U’s public key, used by everyone to
encrypt messages to be sent to U

– DU is U’s private (secret) key, used by U
to decrypt messages sent to U

• EU and DU must be chosen together as a
pair so that DU(EU(P)) is P
– essential that DU cannot be derived or

inferred from EU

– choosing keys relies on number theory,
prime numbers and related mystery

• Public-key encryption solves the key-
distribution problem – no keys to
distribute!

6-29
Copyright © 2001 Trevor R. Grove

… public-key encryption, 2… public-key encryption, 2

• So, sender S uses the recipient R’s
public key (eg published on a Web page)
and computes C = ER(P)

• R uses its private key to compute
P = DR(C)

• The best-known public-key system is
called RSA (Rivest-Shamir-Adelman)
– key selection starts with two 100-digit

prime numbers
• key lengths of 512 to 768 bits suggested
• see Kurose & Ross Ch 7.2 for an example

– multiplies them, then solves some
modulo-arithmetic equations

– deriving a private key from a public key is
computationally intractable (equivalent to
prime-factoring a 200-digit number): no
known (published) algorithms exist

6-30
Copyright © 2001 Trevor R. Grove

… public-key encryption, 3… public-key encryption, 3

• Conclusion: RSA is secure
• Benefits compared to DES:

– trivial key management
– no shared secrets
– no prior arrangement required between a

sender and receiver
• Problems:

– generating keys is extremely time-
consuming

– algorithms for encryption are slow – two
or three orders slower than DES

• In many applications RSA is used only to
exchange DES keys, which are then used
to exchange data

• Some of the RSA problems are overcome
with other public-key algorithms such as
Elliptical Curve
(ref. www.certicom.com/research/history.html)

6-31
Copyright © 2001 Trevor R. Grove

Digital signaturesDigital signatures

• Basic cryptographic techniques can
guarantee secrecy

• What about authentication?
– DES can be used for authentication,

since the key is secret
– public-key cannot be used as is, since

anyone can encrypt a message
• However, can reverse the

public–private roles in RSA to achieve
an authentication scheme

• Suppose that sender S is sending to R,
and R wants to be assured that the
sender really is S
– S uses its private key to encode a short

message, Sig, such as “I am S”
– S then appends this signature to a

regularly-encoded message for R

6-32
Copyright © 2001 Trevor R. Grove

… digital signatures, 2… digital signatures, 2

• R receives the message encoded with
its public key plus the signature
– R decrypts the message as usual
– R decrypts the signature with S’s public

key
– if the result of this is intelligible, it must

have come from S, since only S knows
the private key that goes with S’s public
key

• Symbolic:
– S computes C = ER(P) and

CSig = DS(Sig); transmits C || Csig

– R computes P = DR(C) and
Sig = ES(CSig)

• This scheme has a flaw: CSig can be
extracted and appended to other text
– masquerading
– solution: put CSig in P prior to ER(P)

6-33
Copyright © 2001 Trevor R. Grove

Message digestsMessage digests

• Digital signatures work, but problems:
– computing RSA encryptions is slow and

cumbersome
– often, we need authentication

independent of secrecy (message isn’t
secret, just need to guarantee sender)

• Message digests solve these problems:
– function MD(P) computes a unique hash

function of P (eg 128-bit number)
– sender S “signs” the digest by computing

Cdigest = DS(MD(P))
– S transmits P || Cdigest

– receiver R computes MD(P) and
ES(Cdigest)

– the message is authentic and unmodified
if the computed MD(P) matches the
transmitted one

• MD5 is a standard Internet message-
digest function

6-34
Copyright © 2001 Trevor R. Grove

PKI – public-keyPKI – public-key
infrastructureinfrastructure

• Public-key cryptography is generally more
secure than private-key methods
– there is still one major problem: ensuring

that a public key is “correct”, i.e. that is it
the proper key of an intended recipient

– personal contact for key distribution is
undesirable (a priori contact)

– publishing eg via a web page or e-mail
signature is not reliable

• how can the authenticity of the web page or
e-mail sender be assured?

– solution: Certificate Authorities (CA) create,
store and publish certificates

• CA is responsible for verifying identity of
certificate holder

• users must trust CAs, eg banks,
governments, any trusted brand name

– certificate is only as good as the CA
• there are technical standards for CAs, but

no standards for being a CA

6-35
Copyright © 2001 Trevor R. Grove

Using cryptographicUsing cryptographic
securitysecurity

• Where does cryptography fit into the
architecture of a distributed system?
– OSI: presentation layer, possibly others
– in the absence of a PL…?
– don’t want unnecessary duplication (eg

every application)
– TCP/IP has some de facto standards

• SSL: Secure Sockets Layer
• fits in as a (semi-)layer between

application and transport;
– creates a secure session

• application programs use the SSL API
instead of the ordinary socket API

– in the context of the Web, the Web
browser is the application program

• permits clients to authenticate servers by
inspecting server digital signature

– requires server owners to undergo
“personal” authentication

6-36
Copyright © 2001 Trevor R. Grove

… using cryptographic security, 2… using cryptographic security, 2

• SSL:
– in a Web context, documents are

provided from a different SAP (443
instead of 80)

• document reference uses “https” instead
of “http” to direct to the SSL port

– SSL can provide client authentication, but
in practice does not

• SET: Secure Electronic Transactions
– developed by the financial sector (credit

card organizations) to facilitate secure
purchase and other financial transactions

– restricted to use for finance, not general-
purpose session security

– requires certificates from purchaser,
vendor and financial institution

• browser wallet, merchant server and
acquirer gateway

– SET is quite complex, many protocols

6-37
Copyright © 2001 Trevor R. Grove

… using cryptographic security, 3… using cryptographic security, 3

• IPSec: IP Security
– security at the network layer
– replacement/significant modification to

the IP layer (RFC 2401, 2411 & dozens
more)

• must apply to IPv4 and IPv6 and all future
versions

• hugely complex, requires replacement of
every IP layer on the planet before it
becomes really useful

– no transport layer (or higher) can do
anything about IP spoofing: hosts that
falsify the origin of IP datagrams by
modifying data in the protocol headers

• IPSec is designed to prevent this kind of
security failure

6-38
Copyright © 2001 Trevor R. Grove

… using cryptographic security, 4… using cryptographic security, 4

• E-mail security
– secure e-mail requires

• secrecy of content
• message integrity
• sender authentication

– all of these can be accomplished with
combinations of encryption, signatures
and digests

• SSL or IPSec could handle some, but not
all aspects

– add-in and complementary products exist
for most major e-mail clients

• still a problem with acquiring trusted keys
• existing CAs do issue “personal

certificates” but they are of questionable
value

6-39
Copyright © 2001 Trevor R. Grove

The world wide web (Web)The world wide web (Web)

• The Web is probably the dominant
application in use on the Internet (or e-
mail?)

• What exactly is the Web?
– collection of documents that contain

text, images and other data, plus
references to other documents
(hypertext, linked text, etc)

– documents are made available by
servers

– documents are viewed by client
programs (i.e. Web browsers)

6-40
Copyright © 2001 Trevor R. Grove

… Web: architecture… Web: architecture

• The Web architecture is simple client-
server:
– client establishes connection to a server
– client issues command to retrieve a

document
– server sends requested document
– client browser displays retrieved document

• The Web is defined by huge set of
protocol standards, most notably:
– HTTP: HyperText Transfer Protocol

governs interaction between client browser
and server

– HTML: HyperText Markup Language
defines presentation of documents (ie
interaction between browser and user)

• new versions regularly: Dynamic HTML
(DHTML), eXtensible HTML (XHTML),
VRML; see www.w3c.org for details

6-41
Copyright © 2001 Trevor R. Grove

… Web: server… Web: server

• Conceptually, Web servers are very
simple:
– server listens to TCP port 80 (a TCP/IP

formal well-known port)
– client sends a request for one document
– if the document is available, the server

sends it to the client, and disconnects
– client-server interactions are stateless:

• each request is a separate TCP connection
• no information is preserved between

successive connections
– but, “cookies”!

– HTTP (the protocol defining the
interaction) could be considered a client-
server middleware protocol

• Historically, much of the work in the Web
was done by the clients

• “Server-side” actions are evolving,
becoming very complex

6-42
Copyright © 2001 Trevor R. Grove

HTTPHTTP

• HTTP defines client/server interactions
• Simple:

– client sends commands in plain text
– minimal command-set:

• GET: get a page
• HEAD: get page header
• PUT: store a page
• POST: append to a page

– post is used by clients to send
information to the server, eg form
fields

• DELETE: remove a page
• LINK, UNLINK: create or remove

connections between pages
– response to a command is a status

line, plus other information, if
applicable (in particular, the contents of
the requested page)

6-43
Copyright © 2001 Trevor R. Grove

… Web: client… Web: client

• The real power of the Web comes from
the versatility of HTML documents
– HTML is a tagged language that allows

actions to be associated with the content
• a document author can instruct a browser

how to display and process the document
• documents can contain references to other

documents; called links or hyperlinks
• hyperlinks can be traversed (followed) as

easily as moving within the containing
document

• HTML is a markup language in the same
style as Script, GML, SGML, LaTex, …
– Web browsers can adjust presentation to

local conditions (screen resolution, colour
availability, etc.)

– the antithesis of WYSIWYG
– creates a conflict between author and

browser users

6-44
Copyright © 2001 Trevor R. Grove

HTMLHTML

• HTML defines how to display/process a
page

• Important component of this is the
definition and syntax of a hyperlink
– Uniform Resource Locator (URL), defines:

• the name (identifier) of the page
• where the page is located
• how to access the page (how to process its

contents)
• URL has three parts:

scheme: // location:port / document-name

• Some existing schemes: http, ftp, file,
news, gopher, mailto, telnet
– defines what the document is, and

implicitly how to process:
• for http, get an HTML document
• for FTP, connect to an FTP server
• for mailto, start e-mail UA
• etc

6-45
Copyright © 2001 Trevor R. Grove

… HTML, 2… HTML, 2

• HTML documents can be prepared “by
hand” with a text editor
– most office tools have “save as HTML”

feature, which work to varying degrees
– many HTML authoring systems exist,

FrontPage, DreamWeaver, Adobe, etc
• most have limitations or impose

document organization constraints
• hand-editing is still the method of

choice for long-term development
• HMTL forms can solicit user input:

– forms allow input fields to be defined
– UI elements such as buttons can

invoke an HTTP post operation
– values can be passed to external

programs for processing

6-46
Copyright © 2001 Trevor R. Grove

Web scriptingWeb scripting

• Dynamic HTML (server creating HTML
pages “on the fly”) is common
– reference to a URL causes some form

of program code to be run, which
determines what content should be
returned in response to the URL

• Web browsers are fully programmable
– give greater control over the operation

of the browser
• defeats the purpose of tagging, to some

degree
– JavaScript is the de facto standard

language for browser scripting

6-47
Copyright © 2001 Trevor R. Grove

Client-side and server-sideClient-side and server-side

• Scripting can occur on the server for
dynamic page content, and on the client
– what’s the difference?

• Client-side scripting
– controls the operation of the browser

• form-field content validation
• dynamic changes to appearance: roll-

over highlighting, bolding
• menu bars (flyouts, popups)
• field contents (eg repopulating a list-box)

– once a page is loaded, client-side scripts
can run without a network connection

– related: applets are programs that are
invoked via an applet tag in the HTML

• the programs are fetched from a server,
or installed at the client in advance

• applets can only do what a browser lets
them do

6-48
Copyright © 2001 Trevor R. Grove

… client-side and server-side, 2… client-side and server-side, 2

• Server-side scripting
– used to cause a server to return differing

page contents
– any situation where a given URL will

return different page contents from time
to time probably requires server-side
scripting

– several technologies exist:
• CGI (common gateway interface)
• Perl: popular on Unix
• ASP (Active Server Pages) for MS IIS
• if page content is contained in databases,

an application server works with the
HTTP server to process DB queries and
create pages

– eg Cold Fusion
– DB access can also be programmed

directly with ASP
• Java servelets

6-49
Copyright © 2001 Trevor R. Grove

Scripts and SAPs – anScripts and SAPs – an
editorial commenteditorial comment

• Much of the development with scripting is
inappropriate
– it is an overload of functionality on TCP

port 80
• developers create complex server-side

scripts to perform computations and
transmit results back to the client

• this is often coupled with complex client-
side scripting to interpret the results

– this is the precise definition of a
distributed client-server application

• if the application is not inherently a
“document-transfer and presentation”
application, why use HTTP, HTML and
port 80?

• the answer seems to be that the public
believes everything has to run in a Web
browser

6-50
Copyright © 2001 Trevor R. Grove

… editorial, 2… editorial, 2

• A better approach would be to use a
dedicated SAP for the application
– the effort required to develop a client-side

program and a dedicated server is not
much more that developing the client-
side and server-side scripts

• this is especially true for applications that
are not easily modelled with the
“document fetch and display” paradigm

– distribution of the client programs would
be required, but this can be done via the
standard web

• the time to acquire a program may be
significant, but it occurs only once,
whereas client-side scripts have to be
fetched repeatedly

• Conceptually, there is little difference
between a Web-based document that
invokes a server-side program, and
invoking the program directly via a
dedicated SAP

